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Abstract

In this paper, we explain how to achieve deterministic execution of FMUs (Functional Mockup Units)
under the FMI (Functional Mockup Interface) standard. In particular, we focus on co-simulation, where
an FMU either contains its own internal simulation algorithm or serves as a gateway to a simulation tool.
We give conditions on the design of FMUs and master algorithms (which orchestrate the execution of
FMUs) to achieve deterministic co-simulation. We show that with the current version of the standard,
these conditions demand capabilities from FMUs that are optional in the standard and rarely provided
by an FMU in practice. When FMUs lacking these required capabilities are used to compose a model,
many basic modeling capabilities become unachievable, including simple discrete-event simulation and
variable-step-size numerical integration algorithms. We propose a small extension to the standard and
a policy for designing FMUs that enables deterministic execution for a much broader class of models.
The extension enables a master algorithm to query an FMU for the time of events that are expected in
the future. We show that a model can be executed deterministically if all FMUs in the model are either
memoryless or implement one of rollback or step-size prediction. We show further that such a model can
contain at most one “legacy” FMU that is not memoryless and provides neither rollback nor step-size
prediction.

1 Introduction

FMI (Functional Mockup Interface) is an evolving standard for composing model components designed using
distinct modeling tools [3, 4, 16, 17, 18]. Initially developed within the MODELISAR project, and currently
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supported by a number of industrial partners and tools (see https://www.fmi-standard.org/), FMI shows
enormous promise for enabling the exchange and interoperation of model components. FMI is particularly
suitable for cyber-physical systems (CPSs), where model components may represent distinct subsystems that
are best designed with distinct modeling tools. The FMI standard supports both co-simulation (where a
component, called an FMU (Functional Mock-up Unit), implements its own simulation algorithm) and model
exchange (where an FMU describes the model sufficiently for an external simulation algorithm to execute
simulation). In this paper we focus the discussion on co-simulation in the current version of the standard
(version 2.0, Beta 4 [16]).

Figure 1: A model consisting of FMUs connected in a block diagram.

A model is a collection of interconnected FMUs, as shown in Figure 1. These FMU slaves are to be
executed by some master algorithm (MA), which orchestrates the execution of the FMUs, according to its
own semantics. The MA orchestrates the communication of the FMUs through their inputs and outputs,
shown in the figure as black triangles. The MA may be the execution engine of an established simulation
tool such as Simulink, in which case the model may also include native Simulink blocks interacting with
the FMUs. The semantics implemented by the MA is that of the host tool. Each FMU may have been
exported by some other tool, such as Dymola. The goal of FMI is to enable an FMU exported by one tool
to interoperate with a variety of host tools, and for host tools to orchestrate interactions between FMUs
exported by a variety of other tools.

In principle, FMI is capable of composing components representing timed behavior, including physical
dynamics and discrete events. However, there are significant subtleties and limitations. In particular, it is
possible to design FMUs and MAs that are compliant with the standard, and yet exhibit nondeterministic and
unexpected behavior. In this paper, we explain how to achieve deterministic execution of FMUs. Specifically,
the contributions of this paper are the following:

• We give conditions on the design of FMUs and MAs. With the current version of the standard, these
conditions demand capabilities from FMUs that are optional in the standard and rarely provided by an
FMU in practice (Section 3).

• We clarify and formalize a subset of the FMI standard and give constraints (contracts) on the expected
behavior of FMUs and MAs, so that interoperation has consistent and predictable results (Sections 4).

• We propose a master algorithm for the co-simulation step that only requires capabilities of the current
standard. We prove that the algorithm is convergent, determinate, and ensures maximal progress (Sec-
tion 5.1).

• We propose a small extension to the standard that enables deterministic execution for a much broader
class of models than possible with the current standard. Specifically, we present a new MA where all
FMUs either implement rollback (which is expected to be rarely supported by FMUs) or implement our
proposed extension to the standard (which is easier to support). We show further that such a model can
contain at most one FMU (which we call a “legacy FMU”) that provides neither capability. We prove
that this new algorithm is convergent, determinate, and ensures maximal progress (Section 5.2).

2



2 FMI for Co-Simulation

In this section, we explain capabilities and limitations of the FMI 1.0 and 2.0 beta 4 standards.

2.1 FMI 1.0

The method provided by FMI for advancing time in co-simulation is called fmiDoStep. It is implemented
as a C procedure by the slave FMU. The fmiDoStep method is called by the MA, which coordinates data
exchange between the slaves to control the entire co-simulation. In FMI 1.0, fmiDoStep has the following
signature [17]:

fmiStatus fmiDoStep(

fmiComponent c,

fmiReal currentCommunicationPoint,

fmiReal communicationStepSize,

fmiBoolean newStep);

The currentCommunicationPoint argument is the current simulation time of the master, whereas
communicationStepSize is the time step that the master proposes to the slave. If, for example, the slave
encompasses a model with an ordinary differential equation (ODE), then its numerical integration algorithm
should attempt to advance time by this proposed step. The slave may accept or reject the step. For instance,
it may reject it if the step size is too large and hence causes a discrete event, such as a zero crossing, within
the step.

The MA generally interacts with more than one slave, and uses the boolean flag newStep to indicate
whether the proposed step is a new step, or whether the previously attempted step was rejected by some
slave, and therefore is being repeated.

Although our paper is restricted to co-simulation, we point out an important class of problems in which
a MA not only controls FMUs for co-simulation, but also integrates in time FMUs for model exchange or
ODEs that are implemented in the simulation environment that provides the MA. In this situation, the MA
needs to provide a time integration algorithm. For reasons of computational efficiency, one may want to use
an adaptive step-size, multi-step time integration algorithm. Unfortunately, FMI 1.0 does not support this,
as we will now show. Consider a MA that contains an adaptive (variable) step-size Runge-Kutta 2-3 solver.
Let the communication point be 0 and the Runge-Kutta step size be 1.0. Then, the MA needs to obtain
outputs from the FMU at times 0, 0.5, 0.75, and 1. Thus, there need to be three calls to fmiDoStep, e.g.,

fmiDoStep(component, 0.0, 0.5, true);

fmiDoStep(component, 0.5, 0.25, ?);

fmiDoStep(component, 0.75, 0.25, ?);

The newStep argument is true in the first call, but what should it be in the next two calls? They cannot
specify newStep = false, because then the slave would interpret this as restarting the previous computation,
which has an earlier communication point. But they cannot specify newStep = true either, because if the
last fmiDoStep is rejected by a slave, then all three steps have to be redone. “Rolling back” more than just
to the previous time point (multistep rollback) is not possible, however, with the API of FMI 1.0.

2.2 Extensions in FMI 2.0

The FMI 2.0 beta 4 [16] standard adds more methods to the API. We will focus on two important additions,
fmiGetFMUstate and fmiSetFMUstate, which allow the master to copy and later restore the complete state
of an FMU slave. These procedures provide a general mechanism for rollback, but they are optional for
practical reasons. In practice, an FMU may wrap a large piece of legacy software, enabling the use of that
software with other modeling and simulation tools, and it may not be practical to retrieve and restore the
state of such a legacy system. We will show, however, that if these procedures are not provided by an FMU,
then that FMU will not be usable in some models, as the results of executing the FMU will not match the
intended semantics of the FMU. We give precise conditions under which correct and deterministic execution
of such FMUs is possible. In FMI 2.0 beta 4, doStep has a slightly modified signature [16]:
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fmiStatus fmiDoStep(

fmiComponent c,

fmiReal currentCommunicationPoint,

fmiReal communicationStepSize,

fmiBoolean noSetFMUStatePriorToCurrentPoint);

The types of the arguments are the same as in version 1.0, but the name and semantics of the boolean
argument are now different: by setting noSetFMUStatePriorToCurrentPoint to true, the master “promises”
that it will not call fmiSetFMUState for time instants prior to currentCommunicationPoint.

Even though the API of FMI 2.0 is richer, and being able to read and write the state of an FMU provides
the master with considerable power, the situation is still not entirely satisfactory, for a number of reasons.
First, implementation of the rollback procedures by an FMU is optional and may be difficult to achieve
in practice. Second, saving and restoring the state may incur a large overhead at run time. The API is
not rich enough in general, as we will show, to prevent preventable rollbacks. Third, the interface does
not quite bridge the gap between purely continuous-time models, and other modeling formalisms, such as
discrete-event, synchronous-reactive, dataflow, and state-machines.

2.3 Extrapolation of Input Values

For co-simulation, time advances from a communication point t to a communication point t + h when the
MA calls fmiDoStep with step size h. When this call occurs, the FMU has been provided with input values
at time t. But many integration algorithms require input values during the interval [t, t + h]. For example,
if an implicit solver is used, then the input value at t+ h will also be needed in order to determine the value
of the state and output at time t + h. To support this, the FMI standard allows for the MA to provide
derivatives of the inputs at time t. The FMU will presumably then use these derivatives to extrapolate the
input signals to calculate suitable approximations during the interval.

3 Requirements of FMUs

In this section we identify properties of FMUs that are required for those FMUs to be executed determinis-
tically by a MA in an arbitrary model. Specifically, we illustrate the need for I/O dependency information
and the need for rollback. Currently, both of these are optional in the standard. An FMU may or may not
provide them.

3.1 I/O Dependency Information

A MA provides input data to an FMU by calling a procedure called fmiSetXXX provided by the FMU,
where “XXX” is replaced by the data type of the input. For example, for a real-valued input, the MA will
call fmiSetReal. An argument to this procedure specifies which input is being set, and another argument
provides the value. To retrieve an output value from an FMU, the MA calls fmiGetXXX, providing as an
argument the identity of the output and a pointer to a location into which to store the output. A key
question in the design of an MA becomes, in which order should these procedures be called? The question
is particularly subtle in models with feedback.1

To answer this question, it is helpful to know which outputs of an FMU depend immediately on which
inputs. FMI makes it possible (although not mandatory) to provide such information. In FMI 1.0 this is
done via the DirectDependency element in the XML-description of an FMU [3, 17, 18]. In FMI 2.0 this
information can be provided using the element ModelStructure [4, 16]. In this section we explain by example
why such information is often essential.

1Figure 10 on page 82 of [16] shows a statechart called the “State Machine of Calling Sequence from Master to Slave” which
specifies the calling sequences of the API methods which must be supported by an FMU. Methods fmiGetXXX and fmiSetXXX

appear unordered in a self-loop of the state machine, however, therefore this state machine does not help in answering the
question above.
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Suppose we want to create an FMU with the functionality shown in Figure 2. The figure shows a
continuous-time model modeling a trivial ODE, where the input u is the derivative of the output y1, and
the output y2 is the input u multiplied by −5. The interesting feature of the model is that output y2 has a
direct dependency on input u, whereas the output y1 does not. Specifically, at any time t in a simulation,
the output y2 depends on the value of the input at that same time t, whereas the output y1 depends only
on previous inputs. The equations realized by this FMU are

u =
dy1
dt

y2 = −5u.

In general, a MA may need to know that y1 can be produced by the FMU even before u is known. Suppose
for example, that we want to use the FMU of Figure 2 to simulate the following system of equations,

u = f(y1) u =
dy1
dt

y2 = −5u.

This is shown in the model to the left of Figure 3. How should a MA execute this model? One brute force
approach is to assume that the feedback loop represents an algebraic loop. The MA could guess the value
of u at a time, call fmiSetReal to set the input u equal to this guess, then call fmiGetReal to retrieve the
output values for y1 and y2. It could then evaluate the function f and update the value for u. It could
repeat this process until the value for u no longer changes. And in this example, indeed, the solution would
converge quickly because y1 does not directly depend on u.

In general, however, such an iterative technique for solving algebraic loops may not converge, and when
it converges, the value it converges to may depend on the initial guess. Suppose for example that with the
same FMU of Figure 2 we connect it as shown to the right of Figure 3. In this case, there is a genuine
algebraic loop. Suppose the function f is the identity function. Then in this case, if the initial guess for u
is zero, then the execution converges immediately. If the initial guess is anything other than zero, then the
execution diverges. Suppose instead that f is given by

f(x) = (0.2x)2.

In this case, the feedback loop asserts that u = u2, and there are two possible solutions, u = 0 and u = 1.
The solution that a brute-force MA converges to will depend on the initial guess.

Since we are interested in non-diverging and deterministic composition of FMUs, we need to distinguish
these two cases and we need to reject the case with the algebraic loop. That model is not deterministic.
A MA that ensures determinacy needs to know that y1 does not directly depend on u, and that y2 does.
Once it knows this, it can also execute the correct case (without the algebraic loop) more efficiently, so we
get an additional benefit. In particular, the direct dependency information can be used by a MA to call
the fmiGetReal and fmiSetReal functions for outputs and inputs in a well-defined order. For the leftmost
model of Figure 3, the MA can execute the following sequence:

Figure 2: A continuous-time FMU where output y1 does not have a direct dependency on input u and output
y2 does.

5



Figure 3: FMU of Figure 2 connected in feedback (left) and in an algebraic loop (right).

1. Use fmiGetReal to read the current value of y1. This value is available without knowing the current
input u.

2. Evaluate f (which may itself be an FMU or it may be a native component), and use fmiSetReal to
set the current value of u.

3. Use fmiGetReal to read the current value of y2. Notice that since the value of y2 depends directly on
the current value of u, fmiGetReal needs to perform a calculation in the case of y2.2 Concretely, it
needs to return y2 = −5u.

Notice that in the sequence, fmiGetReal and fmiSetReal are called exactly once, the minimum possible
number of times for any MA.

For the rightmost example of Figure 3, if the MA has direct dependency information, then it can identify
the algebraic loop and either reject the model or alert the user to the potential nondeterminacy.

3.1.1 Static Analysis for Dependency Cycles

For the leftmost example of Figure 3, we were able to use I/O dependency information to identify the order
in which the fmiSetReal and fmiGetReal procedures should be called at a communication point. Moreover,
in this ordering, as long as there is no algebraic loop, these procedures are called exactly once, leading to
efficient execution.

We can generalize this idea to models with arbitrarily complicated structure, constructing a topological
sort of the ports in a model. Consider the model shown in Figure 1. It consists of four blocks, A,B,C,D.

Suppose that the following is known about the I/O dependencies of the blocks of Figure 1:

b1 → b4 b3 → b2 c3 → c2 d1 → d2

where x→ y means that output port y depends directly on input port x. In addition, assume that these are
the only I/O dependencies. This means, in particular, that output b2 of block B does not depend on input
b1, that the output of C does not depend on its input c1, and so on.

In addition to the input-output dependencies induced by each block, output-input dependencies are
induced by the connections in the diagram. Together all these dependencies define a directed graph whose
nodes represent ports. Each edge x → y in the graph represents the fact that y depends on x. The port
dependency graph for this example is shown in Figure 4.

As can be observed, the port dependency graph of Figure 4 is acyclic. If the port dependency graph of
a given model does not contain cycles, then this graph can be used to derive a correct evaluation order of
all ports in the model. From the port dependency graph shown in that figure, and the knowledge about
which ports are inputs and which are outputs, a sequence of calls to fmiSetXXX and fmiGetXXX can be easily
constructed. In general, the dependency graph resulting from such analysis gives a partial order on the calls
to fmiGetXXX and fmiSetXXX, although for the example in Figure 4 the order is total.

2With some care to not do so prematurely, the calculation could alternatively be performed in the call to fmiSetReal.
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Figure 4: The port dependency graph generated from the model of Figure 1. The graph is acyclic.

3.1.2 If I/O Dependency Information is Missing

The FMI standard makes provision of I/O dependency information optional, presumably under the assump-
tion that execution is still possible without this information, albeit less efficiently. Indeed, this is true if
all fmiSetXXX and fmiGetXXX procedures are free of side effects (they make no changes to the state of the
FMU), and that the corresponding mechanisms for setting inputs and retrieving outputs for native simula-
tion components are also free of side effects. A MA can just execute the model in the same manner that
it would solve algebraic loops, repeatedly invoking fmiSetXXX and fmiGetXXX until it gets convergence or
gives up and declares a failure to converge.

However, these are rather strong assumptions. Even if a designer of simulation components intends to
follow these guidelines, it is easy to make mistakes. Such mistakes lead to very subtle bugs that are difficult to
track down. They could also result in nondeterministic models, and the nondeterminism might go unnoticed
because it fails to manifest as variable behavior during testing.

3.2 The Need for Rollback

A main difference between FMI 1.0 and 2.0 is that FMI 2.0 includes functions to save and restore the state of
an FMU. However, implementation of these functions by an FMU is optional, not mandatory [4, 16]. Saving
and restoring the state of an FMU can be used to implement a rollback mechanism, which is often needed
as we now explain.

Consider the example shown in Figure 5. The figure shows two FMUs connected in series. Consider a MA
that co-simulates these two FMUs. To advance time in the simulation, the master needs to call fmiDoStep
on both FMUs. The MA needs to pick an order to do so; it must either call fmiDoStep first on FMU1
and then FMU2, or vice-versa. In both cases, there is the possibility that the FMU on which fmiDoStep is
called first accepts the proposed communication step size whereas the FMU on which fmiDoStep is called
last rejects it. This is problematic as it requires to roll back the FMU which accepted the step.

Figure 5: Two FMUs connected in series.

To make the scenario more concrete, suppose that the MA calls first fmiDoStep on FMU1, passing a
communication step size h. It means that the MA “asks” whether the FMU can advance its local time
(and correspondingly also evolve its state) from the current time t to t + h. If the FMU accepts the step,
the implied semantics is that the state of FMU1 has now evolved to a state at future time t + h. If the
FMU rejects the step, the implied semantics is that the state of FMU1 is still the one at time t (it remains
unchanged). A third possibility is that the FMU manages to make partial progress and advance to some
time t + h′ with h′ < h.

7



Suppose for the sake of this example that FMU1 accepts h. Next, the MA calls fmiDoStep on FMU2,
with the same communication step size, h. Suppose that FMU2 rejects the step. We are now at a situation
where the state of FMU1 is at time t + h, while the state of FMU2 is at time t. To proceed with the
simulation, the master needs to choose a new (smaller) communication step size, reset the state of FMU1
back to time t, and repeat with the new step size.

If FMU2 makes partial progress to time t + h′, then time has advanced to t + h for FMU1 and to t + h′

for FMU2. If the MA chooses t + h′ as the next communication point, and then calls fmiGetXXX to retrieve
the output of FMU1, FMU1 will likely respond with the wrong output value, corresponding to a future time
point. Again, resetting the state (“rolling back”) to time t is necessary. Note that this is true even in models
without feedback, as the one shown in Figure 5.

Rolling back to time t can be achieved as follows. Before calling fmiDoStep, the MA uses fmiGetFMUstate
to copy the state3 of both FMU1 and FMU2 at time t. It then attempts to advance time by h. If this is
accepted by both FMUs, the MA has succeeded. Otherwise, if say FMU2 rejects the step, then the MA can
call fmiSetFMUstate on FMU2 to reset it back to its (copied) state at time t. However, the implementation
of fmiGetFMUstate and fmiSetFMUstate is left optional in the FMI standard.

Moreover, it may appear that if any FMU in a model can reject a step size, then all FMUs in the model
need to support rollback. Indeed, a first algorithm that we present in Section 5 (Algorithm 2), operates like
this. We will also show, however, that with careful design and with a small extension to the standard, a
model can contain some FMUs that do not support rollback (Algorithm 3).

4 FMI Formalization

In this section we formalize a core subset of FMI and propose an explicit contract between FMUs and MAs.

4.1 Function Interface

The FMI standard describes the signatures of the C functions together with informal descriptions of their
meaning. In this paper, we propose a formalization of FMI, which allows to prove properties of MAs, in
particular determinacy and maximal progress (see Section 5). Towards this goal, we formalize the core subset
of the FMI 2.0 specification, leaving out parts that are not relevant for the discussion.

The formalization is summarized in Figure 6. It consists of a set of notations and the signatures of four
(mathematical) functions, each of which corresponds directly to a C procedure defined in the FMI standard.
For instance, doStep corresponds to fmiDoStep, get corresponds to fmiGetXXX, and so on. For simplicity,
we do not include all parameters provided in the C functions and limit the signatures to only essential
parameters. Before giving an overview of the functions, let us explain further the notation used in Figure 6.
C denotes the set of all FMU instances that are coordinated by (the same) MA.4 One such instance is an
element c ∈ C. Given an instance c, Sc denotes the set of all possible states that c may be in, Uc denotes
the set of input port variables of c, and Yc denotes the set of output port variables of c. At this point we
ignore typing issues, and assume a single universe of values for all variables, denoted V.

The XML file in an FMU can (optionally) express the dependencies between input and output variables
of an FMU. We model the set of all such input/output (I/O) dependencies of a given FMU instance c as a
binary relation Dc ⊆ Uc×Yc. Therefore, (u, y) ∈ Dc means that output y of c is directly dependent on input
u of c. Directly dependent means that at a given instant in time, the value of u needs to be known to enable
computation of y.

It is convenient at this point to also formalize the connections between FMU instances in a model. We
do this using a port mapping function P : U → Y , where U and Y are the sets of all input and output
variables of all instances, respectively. P is a total function that maps every input variable to a unique
output variable. This means that we assume that the model is closed; that is, every input is connected to

3In fact, the copying is done by the FMU itself which returns a pointer to the new copy of its state.
4Note that an FMU may be instantiated more than once in a co-simulation environment, meaning that different instances

of the same FMU have separate internal state variables, but share the implementation of the FMI functions and solver.
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Set of FMU instances in a model C
FMU instance identifier c ∈ C
Set of state valuations for instance c Sc

Set of input port variables for instance c Uc

Set of output port variables for instance c Yc

Set of values that a variable may take on V
I/O dependency for instance c Dc ⊆ Uc × Yc

Set of all input variables in a model U =
⋃

c∈C Uc

Set of all output variables in a model Y =
⋃

c∈C Yc

Set of all I/O dependencies D =
⋃

c∈C Dc

Port mapping P : U → Y
Functions:

initc : R≥0 → Sc

setc : Sc × Uc × V→ Sc

getc : Sc × Yc → V
doStepc : Sc × R≥0 → Sc × R≥0

Figure 6: Formalized model of FMI and connections between FMU instances.

some output. Note that two or more inputs may be connected to the same output. However an input is not
allowed to be connected to more than one output. This is achieved by definition, since P is a function.

We now explain the functions in Figure 6. Function initc corresponds to fmiInitializeSlave. It initial-
izes FMU instance c with given start time t, corresponding to the argument tStart of fmiInitializeSlave.5

The function returns the initial state of the FMU instance.
Function setc corresponds to fmiSetXXX. Note that FMI has not one, but several such functions, including

fmiSetReal, fmiSetInteger, and so on. Since we are ignoring data types, we formalize these using a single
function that, for given FMU instance c, given current state s ∈ Sc, input variable u ∈ Uc, and value v ∈ V,
returns the new state of c obtained by setting u to v and keeping the rest of the state unchanged. Similarly,
getc(s, y) returns the value of output variable y of FMU instance c at state s. Function getc corresponds
to fmiGetXXX.

Note that both setc and getc are by definition free of observable side-effects. This means that, since
setc and getc are (total) mathematical functions, given the same input arguments, they always return the
same result.6 This formalization does not imply that an FMU cannot use mechanisms such as value caching
to improve efficiency of the implementation. This can still be done in an imperative implementation in C,
provided these mechanisms do not alter the semantics. In particular, they must guarantee that the result of
calling, say, getc multiple times without having called setc or doStepc in between, is deterministic; that is,
the same value will always be returned.

Function doStepc takes as input the current state s of FMU instance c, and a non-negative real value
h ∈ R≥0, corresponding to the communicationStepSize argument of fmiDoStep. Expression doStepc(s, h)
returns a pair (s′, h′), where s′ models the new state of c at the end of the integration step, and h′ models the
amount by which c managed to advance time. doStepc must guarantee that 0 ≤ h′ ≤ h (more about this in
Section 4.2 below). Note that we allow h = 0, as well as h′ = 0, enabling FMI to support a superdense model
of time, which is widely acknowledged to be essential for proper modeling of hybrid systems [15, 12, 13, 2].
When h′ = h, this indicates to a MA that the FMU is accepting the time step proposed by the MA. When

5Time is expressed here as a non-negative real value t ∈ R≥0. In FMI it is implemented as a floating-point number.
6Actually, the requirement on getc could be relaxed to allow modification of the FMU state in such a way that consecutive

getc calls will return the same output values and the final FMU state does not depend on the order of getc calls.
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h′ < h, the FMU rejects the time step.7 8

The formalization does not include explicit functions corresponding to fmiGetFMUstate and
fmiSetFMUstate, which allow the MA to save and restore the state of an FMU instance. This is not a
problem, as these functions can easily be modeled in our formalization. Saving a state simply means saving
a particular element s ∈ Sc of a particular instance c. Restoring the state simply means passing that saved s
to subsequent calls of getc, doStepc, etc. This is precisely how the algorithm presented in Section 5 works.

4.2 FMU Contract

In this section we make explicit the utilization constraints of the FMI interface presented in Section 4.1. We
point out that these constraints are not always explicit in the FMI standard. In fact, some of these constraints
are probably not even implicitly assumed by the authors of the standard. The reason we introduce these
constraints here is because they are crucial in proving the determinacy properties of the MAs presented in
Section 5.

We call these utilization constraints the FMU contract. They consist of a set of guarantees that every
FMU instance must provide to the caller of the functions of that instance, plus a set of assumptions that
every FMU instance makes, that is, conditions that the caller must respect when calling these functions.

Part of the FMU contract is already given by the signature of the functions listed in Figure 6. For
instance, the signature of doStepc implies that a caller is not allowed to call doStepc(s, h) with h < 0. A
similar set of constraints includes sanity conditions, such as the fact that getc(s, y) can only be called when
y ∈ Yc (i.e., variable y is indeed an output variable of c). We will not elaborate further on these and other
similar constraints.

In addition to the above, we will assume that the following constraints are also part of the FMU contract:

(A0) If doStepc(s, h) = (s′, h′) then 0 ≤ h′ ≤ h.

(A1) If doStepc(s, h) = (s′, h′), then for any h′′ where 0 ≤ h′′ ≤ h′, doStepc(s, h
′′) = (s′′, h′′) for some s′′.

Assumption (A0) has been already stated above while describing the intuition of doStepc and is repeated
here for completeness. Assumption (A1) states that if an FMU accepts a certain time step h (i.e., returns
h′ = h), or at least makes partial progress until h′ < h, then it must accept any time step h′′ smaller than
or equal to h′, provided the FMU is started from the same original state.

The following assumptions formalize the expected behavior of get and set. Let us first introduce some
notation. Given state s ∈ Sc of some instance c ∈ C, and given input variable u ∈ Uc, and value v ∈ V, we
denote by s′ = s[u := v] the state that is identical to s, except that s′ assigns value v to variable u, whereas
s may assign to u a different value.

(A2) Let s′ = setc(s, u, v). Then s′ = s[u := v].

(A3) Let v = getc(s, y) and v′ = getc(s
′, y). If s′ = s[u1 := v1, ..., uk := vk], and output variable y does not

directly depend on any input u1, ..., uk, then v′ = v.

The latter simply formalizes I/O dependencies.

7This reject is often caused by zero-crossing or another discrete change that the FMU detects. But zero-crossings or other
overlooked events are sometimes detected only after an input is provided by set, e.g., when that input violates the validity
range of the extrapolated input values in the previous doStep. This possibility can be handled in FMI 2.0 using the fmiDiscard

callback which may be returned by fmiSetXXX. In this paper we assume doStep to be the only place where an FMU can reject
the proposed time step. We plan to lift this assumption in the future.

8In this formalization we assume that FMUs can have both zero and variable communication step size. (The XML elements
canHandleVariableCommunicationStepSize and canHandleEvents are both enabled.)
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5 Determinate Execution

This section presents two MAs that are formally proven to have the desirable properties of termination (of
an integration step) and determinacy (different runs of the algorithm produce the same result). First, we
present a MA requiring all FMUs to support rollback. This is followed by a second MA that relaxes this
constraint. The latter algorithm uses a proposed extension to the FMI standard, which enables the MA to
query the FMU for expected future time events.

5.1 Algorithm Requiring Rollback

We first give a preprocessing algorithm that creates a list of variables, describing the order that the variables
may be accessed. Recall that P denotes the mapping of input ports to output ports and D the global
input-output dependency relation (see Figure 6). Let X = U ∪ Y , that is, X is the set of all input and
output variables in the model.

Algorithm 1: Order-Variables.

Input: Port mapping P , global dependency relation D, and global set of variables X.
Output: An ordered list x̄ of variables, or error.

1. Let G be a directed graph, where the vertices are represented by port variables X and an edge e ∈ X×X
is a variable dependency. The set of all edges E is then constructed by E = D∪{(y, u) | u ∈ U∧P (u) =
y}.

2. Perform a topological sort on G. If a cycle in G is found, terminate and return error. If no cycles are
found, the resulting list of variables is x̄.

In the following we assume that algorithm Order-Variables returns no error (i.e., G is acyclic). In that case,
based on the variable list x̄ returned by this algorithm, the MA executes, for each communication step, the
algorithm Master-Step given below. We use the following notation: given variable x ∈ X, cx denotes the
(unique) FMU instance c ∈ C to which x belongs. That is, if x ∈ U then cx is the unique c such that x ∈ Uc,
and if x ∈ Y then cx is the unique c such that x ∈ Yc. We represent the states of all FMU instances as a
mutable mapping m, mapping a FMU instance identifier c ∈ C to a state valuation s ∈ S. Expression m[c] is
the current state valuation for FMU instance identifier c. We use statement m[c] := s to denote that the state
for c is updated to be s. Note that at each stage in the execution of the algorithm, the state mapping may
formally be viewed as a function m : C → S. Because the domain C is a set, the elements of m are unordered.

Algorithm 2: Master-Step.

Input: Set of instances C, ordered variable list x̄, port mapping P , the maximal step size hmax , and a
mutable state mapping m of size |C|.
Output: Updated state mapping m and the performed step size h.

1. Set values for all input variables:
For each u ∈ x̄ (in order) where u ∈ U do

(a) y := P (u)

(b) v := getcy (m[cy], y)

(c) m[cu] := setcu(m[cu], u, v)

2. Save the states of all FMUs to enable rollback:
r := m

3. Set communication step size to an initial default value:
h := hmax

4. Find h acceptable by all FMUs:
For each c ∈ C do
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(a) (s′, h′) := doStepc(m[c], hmax )

(b) h := min(h, h′)

(c) m[c] := s′

5. Assert 0 ≤ h ≤ hmax // follows from Assumption (A0)

6. If h < hmax then // roll back and perform step h
For each c ∈ C do

(a) (s′, h′) := doStep(r[c], h)

(b) Assert h′ = h // follows from Assumption (A1)

(c) m[c] := s′

7. Return m and h.

Intuitively, in Step 4 the algorithm “sweeps” over all FMUs, attempting to perform step hmax on each of
them. At the same time the algorithm records the smallest actually achieved step, h. At the end of Step 4, if
h = hmax , then hmax was accepted by all FMUs, and the step is complete. Otherwise, by Assumption (A0),
it must be that h < hmax . In that case the algorithm makes a second pass, performing step h on all FMUs.
Thanks to Assumption (A1), this is bound to be accepted by all FMUs.

Clearly, both Algorithms 1 (Order-Variables) and 2 (Master-Step) terminate, as our models (set of FMU
instances, ports, connections, etc.) are finite.

A useful notion, used in particular to prove Theorem 1 that follows, is the notion of acceptable time step.
Let c ∈ C, s ∈ Sc and h ∈ R≥0. We say that h is acceptable by c at state s if doStepc(s, h) = (s′, h) for some
s′. If m is a global state mapping, then we say that h is acceptable at m if for all c ∈ C, h is acceptable by
c at m[c].

Theorem 1 (Determinacy). Algorithm 2 (Master-Step) is determinate in the sense that, for given inputs
C, P , hmax , and m, the returned updated output state mapping m and h are the same no matter what the
ordered list x̄ produced by Algorithm 1 (Order-Variables) is and no matter which order the instances c ∈ C
are selected in Algorithm 2.

Proof. Denote m1 to be the state mapping at start of Step 1 and m2 to be the state mapping at the start
of Step 2. We first show that m2 is uniquely defined (Lemma 1).

Lemma 1. State mapping m2 is uniquely defined, independently of what the ordered list x̄ produced by
algorithm Order-Variables is.

of Lemma 1. Let u1 . . . uN be the sequence of topologically sorted input variables and n ∈ N be the variable
index. We prove by strong mathematical induction over n that m[cun

] in step 1c is uniquely defined for n ≥ 1.
(i) Basic step: Input variable u1 is defined by output variable y = P (u1). Because the topological sort is
assumed to succeed, y must be a start node in graph G (step 1 in Algorithm 1). Consequently, get(m[cy], y)
can only have one value and therefore the value assigned for u1 is uniquely defined. (ii) Inductive step:
Assume that values in m for variables u1 . . . un are uniquely defined. We now show why the value for un+1

is uniquely defined. Let y = P (un+1) be the output variable that holds the value that variable un+1 will be
assigned to in Step 1(c). We will show that the value assigned to un+1 in Step 1(c) is unique. In addition,
from assumption (A2), set only affects the value of the variable being assigned, therefore, the values of
previously assigned variables do not change. To show that the value assigned to un+1 is unique we consider
two cases. Case 1: It does not exist an x such that (x, y) ∈ D, that is, y is not directly dependent on any
input variables. In this case, according to assumption (A3), get(m[cy], y) is not affected by setting input
values to instance cy. The value for output variable y is unique and consequently is the value for un+1 unique
in Step 1(c). Case 2: There exist a set of directly dependent input variables X = {x | (x, y) ∈ D}. By the
property of topological sort, we have that every x ∈ X must come before both y and un+1 in the sorted
sequence of variables. Because each x ∈ X corresponds to a uk where k ≤ n, we have by the induction
hypothesis that the values for x ∈ X are uniquely defined. Since the values for x is set before the value
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get(m[cy], y) is retrieved, the value for y in Step 1(b) is unique and therefore also the value for un+1 in
Step 1(c). Finally, we can conclude that the state mapping m2 is uniquely defined because all elements set
in Step 1(c) are uniquely defined.

Since r is simply a copy of m2, Lemma 1 also proves that the state mapping r computed at the end of
Step 2 is unique, independently of what the ordered list x̄ produced by algorithm Order-Variables is.

We next prove that the h computed at the end of Step 4 is uniquely defined, independently of the order
in which FMU instances are chosen in the loop iteration of Step 4. Indeed, it can be easy to see that this h
is equal to

min{h′ | c ∈ C, ( , h′) = doStepc(m[c], hmax )}.
and therefore uniquely defined.

The assertion of Step 5 holds since, by Assumption (A0), doStepc(m[c], hmax ) always returns 0 ≤ h ≤
hmax . At this point, if h = hmax , then the algorithm returns state mapping m4 and hmax , where m4

is equal to the current state mapping m. Then, m4 is uniquely defined by the equality (m4[c], hmax ) =
doStepc(m2[c], hmax ), for all c ∈ C.

Otherwise, h < hmax . In this case, Step 6 is executed, which corresponds to rolling back to saved state
mapping r, and performing the computed step h. By Assumption (A1), h is guaranteed to be acceptable by
all FMUs. Therefore, the assertion of Step 6(b) is satisfied for all c ∈ C, and at the end of Step 6 the algorithm
returns state mapping m6 and h, where m6 is uniquely defined by the equality (m6[c], h) = doStepc(r[c], h),
for all c ∈ C.

This completes the proof of Theorem 1.

As can be seen from the proof of Theorem 1 , Algorithm 2 is not only determinate, but is also correct
in the following sense. If m2 is the state mapping after executing Step 1, and m,h are the values returned
by Algorithm 2, then for all c ∈ C, doStepc(m2[c], h) = (m[c], h). This means that Algorithm 2 returns an
acceptable time step h and the state mapping which would result as if all FMUs performed this step just
once.

It is also desirable to show that a master algorithm achieves maximal progress, i.e., it achieves the maximal
acceptable step h. We would thus like to state the following.

Theorem 2 (Maximal progress). Let m2 be the state mapping after executing Step 1 of Algorithm 2 and let
h be the step returned by Algorithm 2. There is no h′ such that h < h′ ≤ hmax and h′ is acceptable at m2.

We can prove Theorem 2 provided all FMUs satisfy an additional assumption:

(P1) If doStepc(s, h) = (s′, h′) and h′ < h, then for all h′′ > h′, doStepc(s, h
′′) = (s′′, h′) for some s′′.

Assumption (P1) says that every FMU makes maximal progress at the individual level. Note that (P1) is
not implied by (A1). For instance, let doStepc(s, h) = (s, h′) where

h′ =

{
h if h ≤ 1
1
2 otherwise.

Then c violates (P1) whereas it satisfies (A1). This example also shows why (P1) is necessary for maximal
progress. If (P1) does not hold, then we can easily construct a counter-example where Algorithm 2 does
not ensure maximal progress. Consider a model with a single FMU, c, and initial state s, as above. Then,
starting with step size hmax = 2, Algorithm 2 will make progress only up to 1

2 , whereas progress up to 1 can
also be made.

Proof of Theorem 2. Suppose the contrary, i.e., there is h′ such that h < h′ ≤ hmax and h′ is acceptable at
m2. This means that for all c ∈ C, h′ is acceptable by c at m2[c], i.e., for all c ∈ C, there exists s, such that
doStepc(m2[c], h′) = (s, h′). Now, since h is returned by Algorithm 2, and h < hmax , there must exist some
FMU c∗ and some state s∗ of c∗ such that doStepc∗(m2[c∗], hmax ) = (s∗, h). It can now be seen that this c∗

contradicts Assumption (P1).
This completes the proof of Theorem 2.
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We end this section with a remark. Algorithm 2 may appear wasteful in the sense that Step 4 continues
attempting to perform step hmax on the rest of the FMUs even after it encounters an FMU which rejects hmax .
An alternative would be to call doStep in Step 4(a) with h instead of hmax . In addition, the algorithm can
keep track of which FMUs have already been executed with the right h, so that it does not re-run them. This
modification can be shown to terminate (due to Assumption (A1)). It can also be shown to be determinate,
provided Assumption (P1) holds. Note that Assumption (P1) is not needed for Theorem 1.

5.2 Predictable Step Sizes

The algorithm given above requires all FMUs to implement rollback. In many cases, this is impractical,
particularly when an FMU wraps legacy code or serves as a wrapper for a simulation tool. Fortunately, with
a small addition to the FMI standard, such FMUs can be handled in certain cases. Specifically, we propose
the addition of a procedure

fmiStatus fmiGetMaxStepSize(

fmiComponent c,

fmiReal *maxStepSize);

where the argument returns an upper bound on the step size that the FMU can accept (or infinity if
there is none). This bound could be zero to indicate the need for a zero-step-size step. We use the function

getMaxStepSizec : Sc → R≥0 ∪ {∞} (1)

to model the fmiGetMaxStepSize procedure. Let CP be the set of FMU instances that implement this
function. We require of these instances that

(A4) If c ∈ CP and s ∈ Sc and getMaxStepSizec(s) = h then for all h′ where 0 ≤ h′ ≤ h, doStepc(s, h
′) =

(s′, h′) for some s′.

This means that an instance in Cp will accept any time step smaller than or equal to the time step returned
by getMaxStepSize. Whether an FMU is in Cp should be indicated as a capability in the FMU XML file.
Let CR be the set of FMU instances with rollback capability, i.e., every c ∈ CR supports setting and getting
states. Furthermore, let CL be the set of FMU instances in a model that are not in CR and not in CP .
We will call these FMUs “legacy FMUs”. Then, we can give a MA that is determinate under the following
assumption.

(A5) (a) |CL| ≤ 1.
(b) CL ∪ CR ∪ CP = C.
(c) CL ∩ CR = ∅ and CR ∩ CP = ∅ and CP ∩ CL = ∅.

That is, a model that composes FMUs has at most one legacy FMU instance, and the remaining instances
all either provide predictable step sizes or support rollback.9

9If an FMU supports both predictable step sizes and rollback, our algorithm only uses its predictable step sizes capability,
so we put it in set CP and not in CR.
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Algorithm 3: Master-Step With Predictable Step Sizes.

Input: Set of instances C, ordered variable list x̄, port mapping P , the maximal step size hmax , and a
mutable state mapping m of size |C|.
Output: Updated state mapping m and the performed step size h.

1. Set values for all input variables:
For each u ∈ x̄ (in order) where u ∈ U do

(a) y := P (u)

(b) v := getcy (m[cy], y)

(c) m[cu] := setcu(m[cu], u, v)

2. Find the minimal predictable communication size:
h := min({getMaxStepSizec(m[c]) | c ∈ CP } ∪ {hmax})

3. Save the states for all instances that can perform rollback:

(a) For each c ∈ CR do r[c] := m[c]

(b) doStepOnLegacy := true

(c) Goto step 5.

4. Restore states for rollback instances.
For each c ∈ CR do m[c] := r[c]

5. Perform doStep on all instances with rollback:
hmin := h
For each c ∈ CR do

(a) (s′, h′) := doStepc(m[c], h)

(b) hmin := min(h′, hmin)

(c) m[c] := s′

6. If hmin < h then h := hmin and goto step 4.

7. Perform doStep on the legacy FMU (if it exists)
If c ∈ CL and doStepOnLegacy then

(a) (s′, h′) := doStepc(m[c], h)

(b) m[c] := s′

(c) doStepOnLegacy := false

(d) If h′ < h then h := h′ and goto step 4.

8. Perform doStep on all FMUs with predictable step size:
For each c ∈ CP do

(a) (s′, h′) := doStepc(m[c], h)

(b) Assert h′ = h // follows from Assumption (A4)

(c) m[c] := s′

9. Return m and h.

With such a MA, a collection of FMUs can always be executed deterministically if there is at most one
“legacy FMU”. Note that Algorithm 2 can be extended easily to also support at most one FMU that does
not implement rollback.

Theorem 3 (Termination). Algorithm 3 (Master-Step With Predictable Step Sizes) terminates.

Proof. Step 1 terminates because x̄ is a finite list. Each of the steps 2, 3, 4, and 5 terminate because CP and
CR are finite sets. The algorithm contains two goto statements: one at step 6 and one at step 7. Each of
these goto statements can be executed at most once, which will show next. The first time step 5 is executed,
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step 6 may go to step 4 if not all doStep succeed. They will all, however, succeed the second time step 5 is
executed because of Assumption A1. Note that doStep is performed on all instances with the same h and
that the smallest step size hmin is used the second time step 5 is executed (if any). If CL = ∅ or h′ = h in
step 7a, step 7 terminates and goes to step 8. If CL is not empty and h′ < h, the algorithm goes to step
4. In this case, step 6 cannot loop back to step 4, because Assumption A1 assures that all calls to doStep

in Step 5 succeed (h updated in step 7 is necessarily smaller than the h used in previous round of step 5).
Also, because doStepOnLegacy = false the second time step 7 is executed, it will not loop back to step 4.
Finally, step 8 terminates because CP is finite.

This completes the proof of Theorem 3.

Theorem 4 (Determinacy). Algorithm 3 (Master-Step With Predictable Step Sizes) is determinate in the
sense that, for given inputs C, P , hmax , and m, the updated output state mapping m and the output step
size h are the same no matter what the ordered list x̄ produced by Algorithm 1 (Order-Variables) is and no
matter the order of how c ∈ C are selected in Algorithm 3.

Proof. Step 1 of Algorithm 3 is identical to step 1 in Algorithm 2; determinacy for step 1 is therefore proven
analogously to the proof of Algorithm 2 using Lemma 1. The step size h in step 2 and the store mapping
r in step 3 are clearly uniquely defined. Variable h is only updated in step 6 and 7b, and only one time in
each step. Consequently, h does not depend on the order how c ∈ C is selected an therefore uniquely defined
at the end of the algorithm.

We now consider how subsets of the mapping of m are uniquely updated. By Assumption A5 we see that
the subsets CL, CP , and CR are distinct. We can also observe that in each of the steps 4, 5, 7, and 8, only
a distinct subset of m is updated, and in each step each element is updated only once. Finally, compared
to m2 (end of step 2), each element is updated at most once. For instances c ∈ CR, m can be updated
in step 5, but this step is always preceded by either the original m2 state mapping or a rollback of states
(step 4) to the states in m2. An instance c ∈ CL, is only updated once because of the guarding boolean
variable doStepOnLegacy . Finally, for instances c ∈ CP , updates in m is only performed once in step 8. By
Assumption A4, we see that the assertion at 8b holds.

Consequently, we conclude that at the end of Step 9 the algorithm returns state mapping m9 and h9,
where m9 is uniquely defined by the equality doStepc(m2[c], h9) = (m9[c], h9), for all c ∈ C.

This completes the proof of Theorem 4.

Analogously to the discussion of correctness for Algorithm 2, we can see in Theorem 4 that Algorithm 3 is not
only determinate, but is also correct in the following sense: if m2 is the state mapping after executing Step 2,
and m9, h9 are the values returned by Algorithm 3, then for all c ∈ C, doStepc(m2[c], h9) = (m9[c], h9).

We next prove maximal progress for Algorithm 3. Again we assume (P1) on all FMUs. In addition, we
need the following assumption for FMUs with predictable step sizes:

(P2) If c ∈ CP and s ∈ Sc and getMaxStepSizec(s) = h then for all h′ > h, doStepc(s, h
′) = (s′, h) for

some s′.

Theorem 5. Let m2 be the state mapping after executing Step 1 of Algorithm 3 and let h be the step returned
by Algorithm 3. There is no h′ such that h < h′ ≤ hmax and h′ is acceptable at m2.

Proof. Suppose the contrary, i.e., there is h′ such that h < h′ ≤ hmax and h′ is acceptable at m2. This
means that for all c ∈ C, h′ is acceptable by c at m2[c], i.e., for all c ∈ C, there exists s, such that
doStepc(m2[c], h′) = (s, h′).

Let hP be the h computed at Step 2 of Algorithm 3, i.e.,

hP = min({getMaxStepSizec(m[c]) | c ∈ CP } ∪ {hmax}).

We claim that h′ ≤ hP . Otherwise, there is some c ∈ CP such that doStepc(m2[c], h′) = (s, h′), yet
getMaxStepSizec(m[c]) < h′, which violates Assumption (P2).
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Now, since h is returned by Algorithm 3, there must exist some FMU c∗ ∈ C, some state s∗ of c∗, and
some h∗, such that h < h∗ ≤ hP , and doStepc∗(m2[c∗], h∗) = (s∗, h). It can now be seen that this c∗

contradicts Assumption (P1).
This completes the proof of Theorem 5.

6 Related Work

This paper focuses on co-simulation rather than model exchange because it more loosely couples simulation
tools. Co-simulation enables the principle of hierarchical heterogeneity, pioneered in the Ptolemy Project [9],
where multiple models of computation (MoCs) are combined hierarchically. Since an FMU for co-simulation
includes its own simulation engine, there is no requirement that its simulation engine match precisely the
semantics of the host simulator. It only has to be capable of providing the semantics of the FMI interface
(a semantics that this paper clarifies). In model exchange, the host simulator semantics prevail, and any
differences in semantics intended by the author of the FMU will be subjugated. In effect, this means that
the author of the FMU and the author of the host simulator have to agree on the semantics. Such agreement
has been shown to rarely exist even within communities working on closely related modeling techniques,
as evidenced, for example, by the failure of the Hybrid Systems Interchange Format, HSIF [22, 23, 26].
Such agreement has also proven impossible to achieve in communities with broader interests, such as the
UML community, where a plethora of semantic variants exist for nearly every UML notation. Co-simulation
enables interoperation even in the absence of agreement about semantics.

Despite these benefits, state-of-the-art co-simulation is still quite limited. To quote from the FMI stan-
dard [17]:

“In contrast to classical (mono-disciplinary) simulation techniques in system dynamics, state-of-the-
art master algorithms in co-simulation are even today based on constant communication step sizes and
do not provide any automatic error control. Constant communication step sizes may restrict strongly
the efficiency of co-simulation algorithms if the solution behavior changes considerably during time
integration.”

A constant time step size co-simulation interface has for example been implemented in Ptolemy II as part
of the Building Controls Virtual Test Bed [28]. The TISC [11] co-simulation environment uses a variable
synchronization step size. In TISC, a simulation module can propose the length of the next time step.

An API that has been available for some time is Simulink’s S-Functions. S-Functions are proprietary and
not standardized, therefore not a true alternative to FMI which aims to be an open standard. S-Functions
are also quite limited. For instance, being able to discard a time step, which is essential in a number of
numerical simulation methods, is not possible with S-Functions [3].

S-Functions use a split-phase API with two distinct functions per block, as in Moore/Mealy state ma-
chines; an Output function computing the output of the block and a separate Update function that updates
the state of the block. A split-phase API is also used in Ptolemy II [9], where Output and Update are
called Fire and Postfire. The FMI standard, as interpreted in this paper, supports indirectly split-phase
by using fmiGetXXX as the output function and fmiDoStep as the state update function. The split-phase
API is interesting as it allows to decouple the computation of outputs for updating the states. This in turn
enables delaying to commit a step, which can be useful in handling models where rollback is required, as
in several examples presented above. A split-phase API can also be useful in dealing with algebraic loops
or other model characteristics that require some type of fixpoint calculation. For instance, split-phase is
essential in handling the semantics of synchronous block diagrams in a general way [8]. The split-phase API
can be generalized to include more than one Output function, which is useful in dealing with hierarchical
models [14]. Lublinerman et al. [14] also deal with the problem of modular code generation, related to the
problem of automatically synthesizing FMUs from models. This synthesis problem is, however, beyond the
scope of this paper.

The abstract semantics of Ptolemy include, in addition to the Fire and Postfire functions, the FireAt
function which enables handling timed actors (both continuous-time and discrete-event). FireAt is different
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in nature than Fire and Postfire, in the sense that while the latter two are implemented by the slave and
called by the master, FireAt is implemented by the master and called by the slave.10 Tripakis et al. [27]
formalize the semantics of Ptolemy using a deadline function, from which the getMaxStepSize function has
been inspired.

The above can be seen as attempts to come up with the “right” API for modeling heterogeneous systems,
and in particular, continuous as well as (timed) discrete-event systems. Very relevant to this problem is
the work reported by Denckla and Mosterman [7] and Mosterman et al. [19], who present stream- and
state-based functional interfaces for a Simulink-type of language. Also, Sander and Jantsch [25] present the
ForSyDe modeling framework, which provides a set of libraries for capturing heterogeneous MoCs based on
the functional programming language Haskell. Broman and Siek [5] address the heterogeneous modeling
problem using an embedded domain specific language (EDSL) approach.

Other approaches to tool integration apart include coordination languages [21] and tool buses [6, 10, 20, 24].
These focus on managing workflows, general-purpose distributed computation, and data exchange between
concurrent tasks.

Bastian et al. [1] propose a MA implementation for FMI co-simulation that is designed to be platform
independent. Their MA uses fixed communication step size and it assumes that FMUs are not dependent
on the current output of other FMUs. By contrast, our MAs have variable communication step size and
supports direct dependencies.

7 Conclusions

FMI shows enormous promise for enabling interoperability of simulation tools for CPS. We have identified
some subtleties presented by the design of the API in the standard, and have offered constraints on the
design of FMUs and MAs such that determinate execution of many models is ensured. We have defined a
class of MAs that correctly handles models containing a mix of FMUs that support rollback, FMUs that
do not support rollback but implement a proposed small extension to FMI for predictable step sizes, and
at most one FMU that supports neither. Even in the case where rollback is needed, only 1-step rollback is
enough for determinacy, as our master algorithms show. This is essential for efficient implementation, as
multi-step rollback is very expensive.

As of this writing, the FMI 2.0 standard is still in flux. We base our analysis on the Beta 4.0 version,
but the final version may introduce additional subtleties and/or problems.

An interesting direction of future work is the composition of both co-simulation and model exchange
FMUs. Such heterogeneous composition is both practically important and requires new kinds of MAs.
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